Антиблокировочная система(abs): устройство, принцип работы

Правильное торможение

Для того чтобы остановить транспортное средство, мало лишь вовремя надавить на педаль тормоза. Да, машина остановиться, но сколько это займет времени и какой путь при этом она преодолеет в случае обычного торможения? Тут все главным образом зависит от скорости — если она небольшая (скажем до 20-30 км/ч), то транспорт остановится довольно быстро, не преодолев и несколько десятков метров. Совсем другое дело, когда необходимо прибегнуть к экстренному торможению при движении более 60-100 км/ч.

Если резко ударить по педали тормоза, колеса будут тут же блокированы, но машина по-прежнему будет двигаться, словно будучи на лыжах — шины будут скользить по дороге. Также под всеми 4 колесами может оказаться разнородная поверхность — соответственно скорость скольжения будет разно, что уже само по себе становиться опасным. Теряется управляемость над машиной и ее понесет в занос. А неуправляемый транспорт — это источник повышенной опасности для других участников дорожного движения.

Какой из этого делает вывод? Правильно — предотвратить жесткую блокировку колес во избежание скольжения! Чтобы этого достигнуть есть один проверенный прием — торможение должно быть прерывистым. Для этого педаль тормоза не обязательно постоянно держать в нажатом состоянии, нужно время от времени отпускать ее, после чего снова нажимать. Примерно также мы поступаем в случае поднятия машины ножным домкратом.

Такие незамысловатые действия обеспечивают сохранения управляемости транспортом — шины не теряют сцепления с дорогой. Однако попав в экстремальное положение, далеко не каждый водитель способен избежать человеческого фактора. Очень просто растеряться и позабыть обо всех правилах. И как раз по этой причине изобретен помощник в лице АБС.

Как понять работает ли система ABS и что делать в случае её включения?

Узнать о срабатывании системы ABS можно по загорающемуся индикатору на приборной панели. Как правило, он красного или жёлтого цвета и состоит из соответствующей надписи. Кроме того, через педаль тормоза будут ощущаться толчки или вибрация совместно со звуковым эффектом . Причина этого процесс постоянного открытия/закрытия клапанов, регулирующих давление на тормозные механизмы.

Если вы почувствовали вибрацию в педали, то не убирайте ногу и продолжайте прикладывать большое усилие. На автомобилях с ABS при резком торможении лучше всего немедленно выдавить до упора педали тормоза и сцепления. Благодаря этому вы полностью перестанете тормозить двигателем, улучшив эффективность АБС. Не стремитесь понять тормозные пульсации, устранить или реагировать на них. Задача водителя быстро и с приличной силой вдавить в пол педаль тормоза и не убирать с неё ногу до полной остановки транспортного средства.

Кстати, если при включении зажигания индикатор АБС не загорается вместе с контрольными приборами, то это может говорить о неполадках в этой системе. Довольно часто проблема заключается в том, что после замены стоек или прочего серьёзного ремонта ходовой части выходит из строя датчик абс или его просто забывают подключить невнимательные специалисты сервиса. Нередко датчик АБС просто сильно загрязняется из-за своего расположения вблизи вращающихся деталей и колёс, поэтому элементарная чистка контактов «возвращает его к жизни».

В чём преимущества антиблокировочной системы тормозов?

Перечислим лишь несколько основных положительных сторон в работе системы ABS:

  • Обеспечивает безопасность водителя и его пассажиров;
  • Сокращает тормозной путь на различном дорожном полотне;
  • Не допускает блокировку ведущих колёс, а, значит, даёт возможность водителю маневрировать, например, объехать препятствие или сохранить управление на резком повороте;
  • Снижает шанс попасть в неконтролируемый занос;
  • Способствует равномерному износу протектора покрышек.

Закрытая система с 2/2-ходовыми электромагнитными клапанами

После выхода разных законодательных положений по защите патентных прав многие производители все чаще стали использовать антиблокировочную закрытую систему с 2/2-ходовыми электромагнитными клапанами, которая сочетает преимущества обеих описанных выше систем: быстрая точная модуляция тормозного усилия 2/2-ходовыми электромагнитными клапанами, отвечающими за впуск и выпуск на каждом колесном тормозном цилиндре, и отсутствие потери тормозной жидкости из участка гидравлического контура, нагруженного тормозным усилием, в результате ABS-регулирования.

На рисунке представлен гидравлический контур закрытой 4-канальной антиблокировочной системы с разделением контуров тормозного привода по диагонали при помощи 2/2-ходовых электромагнитных клапанов.

Принцип включения электромагнитных клапанов для увеличения, удержания и уменьшения тормозного усилия при ABS-регулировании такой же, как и в описанной выше системе.

Стандартное положение или повышение тормозного усилия: в обесточенном состоянии все впускные клапаны открыты, все выпускные клапаны закрыты. Тормозное усилие главного тормозного цилиндра при нажатии на педаль тормоза может беспрепятственно воздействовать на колесный и тормозной цилиндр.

Удержание тормозного усилия: впускной клапан закрывается (подается питание), выпускной клапан в обесточенном положении остается закрытым. Давление тормозной жидкости в соответствующем цилиндре остается постоянным.

Уменьшение тормозного усилия: впускной клапан остается закрытым (подается питание), выпускной клапан открывается (подается питание). Тормозное усилие может быть уменьшено путем сброса давления через выпускной клапан в компенсационный бачок.

Насос обратной подачи включается, когда на одном из колесных тормозных цилиндрах должно быть уменьшено тормозное усилие. В результате тормозная жидкость из компенсационного бачка через компенсационную камеру возвращается в главный тормозной цилиндр. Насос отключается только в том случае, когда регулирования больше не требуется.

При ABS-регулировании выполняется точная модуляция тормозного усилия путем кратковременного включения и отключения электромагнитных клапанов, вследствие чего тормозное усилие увеличивается или уменьшается постепенно. Процесс регулирования колесного тормозного цилиндра так как он происходит в действительности, представлен на рисунке.

Впускной клапан закрывается (подача питания) для удержания тормозного усилия и предотвращения его дальнейшего увеличения, поскольку скорость вращения колеса становится гораздо меньше скорости движения. Поскольку скорость вращения колеса продолжает падать, кратковременно открывается выпускной клапан (подача питания) для незначительного снижения тормозного усилия. Включается двигатель насоса. В результате незначительного тормозного усилия и снижения тормозного действия скорость вращения колеса снова приближается к скорости движения автомобиля. Тормозное усилие снова может быть увеличено. Для этого впускной клапан кратковременно открывается (обесточенное состояние). На представленном примере сразу же после этого впускной клапан еще раз кратковременно открывается, так как тормозное усилие может увеличиваться дальше. Затем снова кратковременно открывается выпускной клапан и т.д.

Возможность точной модуляции тормозного усилия часто используется и для работы электронного распределителя тормозных сил (EBV). Он включается перед системой ABS, когда при легком торможении появляется слишком сильное замедление задних колес. На рисунке представлен рабочий диапазон электронного распределителя тормозных сил.

При помощи электроники системы ABS распределение тормозных сил может точно подстраиваться под разную нагрузку автомобиля для обеспечения максимальной степени его устойчивости в любых условиях. Механический распределитель тормозных сил и редукционный клапан для задних тормозов в данном случае излишни и могут не устанавливаться.

Что такое ABS. Устройство и принцип работы системы

Система АБС включает следующие элементы:

  • Датчик абс (по-другому его ещё называют датчик скорости, вращения или ускорения);
  • Электронный блок управления АБС (ЭБУ);
  • Гидравлический блок и клапаны АБС;
  • Тормозные механизмы системы АБС.

Как работает система АБС

  1. Антиблокировочная система тормозов работает довольно интересно. Надавив на педаль тормоза, образуется определённое давление в гидротормозной системе. Это позволяет прижимать колодки к тормозным дискам посредством суппортов, и за счёт этого останавливать автомобиль.
  2. Датчик абс, чаще всего установленный на каждом переднем колесе и на заднем мосту (трёхканальный тип), играет роль «глаз и ушей» всей антиблокировочной системы, в случае блокировки сигнализируя ЭБУ о необходимости снизить давление тормозной жидкости. Как только датчик скорости понимает, что колесо снова вращается, то отправляет информацию АБС о восстановлении прежнего давления в тормозной магистрали.
  3. Гидроблок АБС в большинстве автомобилей расположен поблизости от ЭБУ или совмещено и представляет собой несколько клапанов, которые контролируют давление тормозной жидкости. Все эти клапаны размещены близко друг к другу и закрыты твёрдым корпусом.

Если в процессе торможения колесо пытается проскальзывать, то ЭБУ с помощью клапанов гидроблока АБС уменьшает или вовсе ограничивает поступление жидкости к тормозному цилиндру. Если этого будет недостаточно, то электромагнитный клапан отправит тормозную жидкость в отводную часть, понизив давление. Как только колесо снова приобретает скорость вращения остальных, то ЭБУ АБС посылает информацию о необходимости открыть клапаны, а тормозной механизм АБС опять ощущает на себе прежнее давление.

И так колёса продолжают то блокироваться, то разблокироваться, создавая эффект импульсного торможения, позволяя сократить тормозной путь и сохранить устойчивость автомобиля на дороге. В чём ещё преимущество современной системы АБС, так это возможность датчиков вращения реагировать даже на малейшее изменение скорости конкретно каждого колеса. Блок управления АБС работает быстро и мгновенно понимает, что пришла пора уменьшить тормозное воздействие, так как за секунду он способен принимать от 6 до 20 сигналов от датчиков скорости. В результате колесо даже не успевает заблокироваться, а его количество оборотов корректируется АБС «на ходу».

Обоснование необходимости применения АБС

При прямолинейном движении во время торможения автомобиля на его колесо действуют разные силы: вес автомобиля, тормозная сила и боковая сила. Величина сил зависит от множества факторов, таких как скорость движения автомобиля, размеры колес, состояние и конструкция шин и дорожного полотна, конструкции тормозной системы и ее технического состояния.

Во время прямолинейного движения автомобиля с постоянной скоростью разницы в скоростях вращения колес не возникает  При этом не возникает также разницы между приведенной скоростью движения автомобиля νF и согласованной с ней усредненной скоростью νR вращения колес, т.е. νF = νR. Под усредненной скоростью вращения колес понимается величина

Но как только начинается процесс интенсивного торможения, приведенная скорость автомобиля νF, начинает превышать усредненную скорость νR вращения колес, так как кузов «обгоняет» колеса под действием силы инерции массы автомобиля, т.е. νF >νR.

В такой ситуации между колесами и дорогой возникает явление равномерного умеренного скольжения  Это скольжение является рабочим параметром тормозной системы и определяется как:

Физически рабочее скольжение в отличие от аварийного юза реализуется за счет прогибания протектора колесных шин, сдвига мелких фракций на поверхности дороги, и за счет амортизации автомобильной подвески. Эти факторы удерживают автомобиль от юза и отображают полезную суть рабочего скольжения колеса при его торможении. Ясно, что при этом замедление вращения колеса происходит постепенно и управляемо, а не мгновенно, как при блокировке.

Величина λ названа коэффициентом скольжения и измеряется в процентах. Если λ = 0%, то колеса вращаются свободно, без воздействия на них дорожного сопротивления трению. Коэффициент скольжения λ = 100% соответствует юзу колеса, когда оно переходит в заблокированное состояние. При этом значительно снижаются тормозная эффективность, устойчивость и управляемость автомобиля при торможении.

При появлении эффекта рабочего скольжения, при котором все еще имеет место нормальное качение колес  между ними и дорогой возникает равномерно возрастающее сопротивление трению выражаемое коэффициентом сцепления в направлении движения μHF, которое является функцией от рабочего скольжения γ и создает силу торможения автомобиля FB = K μHFG. К – конст­руктивный коэффициент пропорциональности, зависящий от состояния протектора шин, тормозных колодок  тормозных дисков и тормозных суппортов.

На рисунке представлена зависимость величины относительного скольжения колеса от коэффициента сцепления в направлении движения μHF и коэффициента сцепления в поперечном направлении μS при торможении на сухом бетонном покрытии.

Как видно из рисунке величина относительного скольжения колеса λ достигает своего максимального значения при определенных значениях коэффициента сцепления в направлении движения μHF, при уменьшении коэффициента сцепления в поперечном направлении μS. Для большинства дорожных покрытий при значениях γ, а значит и тормозная сила, в интервале от 10% до 30% μHF достигает максимальной величины и это значение называют критическим (λ)кp. В этих пределах и коэффициент сцепления в поперечном направлении μS имеет достаточно высокое значение, что обеспечивает устойчивое движение автомобиля при торможении, если на автомобиль действует боковая сила.

Вид кривых коэффициента сцепления в направлении движения μHF, и коэффициента сцепления в поперечном направлении μS зависит в значительной степени от типа и состояния дорожного покрытия и шин.

Важно заметить, что при малых γ (от 0% до 7%) сила торможения линейно зависит от скольжения. При экстренном торможении значительное усилие на педаль тормоза может вызвать блокировку колес

Сила сцепления шин с дорожным покрытием при этом резко ослабевает, и водитель теряет управление автомобилем

При экстренном торможении значительное усилие на педаль тормоза может вызвать блокировку колес. Сила сцепления шин с дорожным покрытием при этом резко ослабевает, и водитель теряет управление автомобилем.

Выполнение XYZ-анализа

Алгоритм XYZ-анализа строится так:

  1. Выбрать объект и анализируемый параметр.
  2. Определить временные рамки исследования.
  3. Рассчитать коэффициент вариации по каждому объекту.
  4. Ранжировать объекты по коэффициенту вариации.
  5. Распределить объекты на 3 группы:
    • Х — коэффициент вариации от 0 до 10% — группу характеризует устойчивость;
    • Y — коэффициент вариации от 10 до 25% — поведение группы изменчиво, но прогнозируемо;
    • Z — коэффициент вариации от 25% — случайный, разовый характер сделки, спроса и т. д.

Выполним XYZ-анализ клиентской базы ООО «Альфа» средствами Excel:

  1. Объектом анализа выбираем клиентскую базу и рассматриваем сумму покупок по каждому.
  2. Определим период, за который проводим анализ. Это будут шесть месяцев из полугодия, рассмотренного в АВС-анализе.
  3. Составляем таблицу клиентов с объёмами покупок за каждый из выбранных шести месяцев.
  4. Коэффициент вариации рассчитывается по сложной формуле. Его значения колеблются от 0 до 1. В Excel для этого предусмотрен специальный инструмент: если данные начинают вводиться со строки 3 (ячейки В3-G3), в свободном столбце вписываем формулу =СТАНДОТКЛОНП(B3:G3)/СРЗНАЧ(B3:G3), протягиваем до последней строки, ячейкам задаём процентное значение. В этом варианте коэффициент будет отображаться в процентах.
  5. Для удобства в таблице можно рассчитать средние продажи за месяц по каждому клиенту и стандартное отклонение. Но для результатов анализа принципиальным будет коэффициент вариации. На этом этапе он должен быть проставлен в строке каждого клиента.
  6. Таблицу клиентов сортируем в порядке возрастания по значению коэффициента (меню «Данные» → «Сортировка» → «По возрастанию»). Делим их на 3 группы. В группу X войдут клиенты с коэффициентом от 0 до 10%, Y — от 10 до 25%, Z — выше этого значения. Если объектов немного, можно вместо сортировки проставить принадлежность к группе вручную в отдельном столбце.

  7. Подведём итог проведённого XYZ-анализа клиентской базы ООО «Альфа». В группу X вошли стабильно покупающие клиенты, их насчиталось 8 из 20. Для вошедших в группу Y (7 клиентов) характерен колеблющийся спрос. В группе Z (5 клиентов) спрос практически непредсказуем и скорее случаен, чем закономерен. Делаем вывод, что поведение большинства клиентов компании стабильно или прогнозируемо.

Менять или ремонтировать

В результате диагностики устройства можно определить, в каком узле датчика имеется повреждение. Если показания тестера стремятся к нулю — это говорит о коротком замыкании в проводах подключения, «бесконечность» сигнализирует о нарушении целостности обмотки катушки. Бытует мнение, что ремонт проводки не вызывает никаких проблем, а вот неисправный датчик легче просто заменить. С первой мыслью трудно не согласиться, но следующий «пункт» можно и оспорить.

Дело в том, что стоимость некоторых датчиков достигает 14–18 тыс. руб., а ждать их доставки придётся в течение долгого времени. Имея определённые навыки, запас терпения и природную смекалку, гораздо полезнее и быстрее будет выполнить ремонт устройства, чем оплачивать долгожданный дорогостоящий заказ. Отметим, что этот совет носит только рекомендательный характер — окончательный вердикт остаётся за вами. Если решение о ремонте всё же принято, с радостью поможем грамотно его выполнить.

История

Впервые данная разработка была представлена общественности в 1950-х гг. Однако ее нельзя было назвать концепцией, потому что данную идею разрабатывали еще в начале ХХ века. Так, инженер Дж.Френсис в 1908-м году продемонстрировал работу своего «Регулятора», который предотвращал проскальзывание колес в рельсовом транспорте.

Подобную систему разрабатывал и механик и инженер Г. Вуазен. Он пытался создать систему тормозов для самолетов, которая самостоятельно регулировала гидравлическое воздействие на тормозные элементы так, чтобы колеса летательного аппарата не скользили по взлетно-посадочной полосе в результате торможения. Эксперименты с модификациями таких устройств он выполнял в 20-х годах ХХ века.

Ранние системы

Конечно, как и в случае всех первых разработок любых изобретений, изначально система, предотвращающая блокировку, имела сложное и примитивное строение. Так, вышеупомянутый Габриэль Вуазен в своих разработках использовал маховик и гидроклапан, подсоединенный к магистрали тормозов.

Работала система по такому принципу. Маховик крепился к барабану на колесе и вращался вместе с ним. Когда нет заноса, барабан и маховик вращаются с одинаковой скоростью. Как только колесо останавливается, барабан замедляется вместе с ним. Из-за того, что маховик продолжает вращаться, приоткрывался клапан гидравлической магистрали, снижая усилие на тормозной барабан.

Такая система зарекомендовала себя большей стабильностью транспортного средства, так как в случае заноса водитель инстинктивно еще сильнее нажимает на тормоза, вместо того, чтобы выполнять эту процедуру плавно. Данная разработка повысила эффективность торможения на 30 процентов. Еще один положительный результат – меньше лопнувших и стертых шин.

Однако должное признание система получила благодаря усилиям немецкого инженера Карла Весселя. Его разработку запантентовали в 1928-м. Несмотря на это установка не применялась на транспорте по причине значительных недоработок в ее устройстве.

Действительно рабочая антискользящая система тормозов использовалась в авиации в начале 50-х годов. А в 1958-м комплект Maxaret впервые был установлен на мотоцикл. Модель Royal Enfield Super Meteor был оснащен рабочей антиблокировочной системой. За работой системы следила Дорожная лаборатория. Исследования показали, что данный элемент тормозной системы значительно снизит аварии на мотоциклах, большая часть которых происходят именно из-за заноса при блокировке колеса во время торможения. Несмотря на такие показатели, главный директор технического отдела мотокомпании не одобрил массовое производство АБС.

В автомобилях механическая система, предотвращающая скольжение колес, применялась лишь в некоторых моделях. Одной из них является Ford Zodiac. Причиной такой ситуации являлась низкая надежность устройства. Лишь, начиная с 60-х гг. электронная антиблокировочная система нашла свое применение в известных самолетах Concorde.

Современные системы

Принцип электронной модификации перенял инженер исследовательского центра Fiat и назвал изобретение Antiskid. Разработка была продана компании Бош, после чего и получила название ABS.

В 1971-м году автомобильный производитель Chrysler представил полноценную и эффективную систему, которая управлялась компьютером. Похожую разработку годом раньше применил американский Ford в своем культовом Lincoln Continental. Постепенно эстафету приняли и другие ведущие автопроизводители. К середине 70-х годов большинство автомобилей с задним приводом имели электронную антиблокировочную систему на ведущих колесах, а некоторые авто оснащались модификацией, работающей на всех четырех колесах.

С 1976 года подобная разработка начала применяться на грузовом транспорте. В 1986-м система получила название EBS, так как работала полностью на электронике.

Совмещение ABC и XYZ-анализов

Совмещённый анализ ABC и XYZ считается эффективным и разносторонним инструментом. Метод базируется на формировании единой таблицы, где по девяти группам распределяют объекты анализа на основании итогов ABC-анализа и XYZ-анализа.

Выполнение совмещённого анализа

Выполним совмещение АВС и XYZ-анализов клиентской базы ООО «Альфа» средствами Excel:

Берём результаты ABC-анализа — таблицу с разбивкой клиентов на группы.
Берём результаты XYZ-анализа клиентской базы.
Создаём совмещённую таблицу (можно добавить дополнительные столбцы на уже созданную странницу). В отдельном столбце по каждому клиенту проставляем две буквы — группы из АВС и XYZ-анализа.
Создаём новую таблицу из трёх строк и трёх столбцов. Строки обозначаем последовательно как A, B и C, а столбцы — X, Y и Z. Исследуемые объекты (у нас это клиенты) разместим в девяти ячейках сводной таблицы в зависимости от присвоенных им отметок из двух букв.
Сделаем выводы из совмещённого анализа

У нас будет сформирован список клиентов, на работу с которыми следует обращать активное внимание. В ячейке AX будут клиенты с наиболее стабильной потребностью в товарах и дающие максимум выручки

Также обратим внимание на ячейки BX и AY, отражающие покупателей с довольно высоким потенциалом. Самые неперспективные клиенты займут позиции BZ и особенно CZ.

Таблица: интерпретация результатов совмещённого анализа

A Большой стабильный доход Большой предсказуемый доход Большой нерегулярный доход
B Средний стабильный доход Средний предсказуемый доход Средний нерегулярный доход
C Маленький стабильный доход Маленький предсказуемый доход Маленький нерегулярный доход
X Y Z

Совмещение использования ABC и XYZ-анализа помогает управлять как товарными ресурсами, так и базой клиентов. Этот инструмент помогает корректировать ассортиментную политику, повышая долю востребованных товаров и платёжеспособных клиентов. Совмещённый анализ хорош тем, что универсален, пригоден в разрезе любых объектов бизнеса: от товаров до оценки работы персонала.

Автор статьи: Александр Бережнов

Предприниматель, маркетолог, автор и владелец сайта «ХитёрБобёр.ru» (до 2019 г.)

Закончил социально-психологический и лингвистический факультет Северо-Кавказского социального института в Ставрополе. Создал и с нуля развил портал о бизнесе и личной эффективности «ХитёрБобёр.ru».

Бизнес-консультант, который профессионально занимается продвижением сайтов и контент-маркетингом. Проводит семинары от Министерства экономического развития Северного Кавказа на темы интернет-рекламы.

Лауреат конкурса «Молодой предприниматель России-2016» (номинация «Открытие года»), молодежного форума Северного Кавказа «Машук-2011”.

Поколения и виды

Современная система, устанавливаемая на авто, — четырехканальная. Она включает в себя по два клапана на каждое колесо, а также по одному аккумулятору давления и амортизационной камере на контур (а их – два).

В целом, эта система уже насчитывает 5 поколений. Первая из них появилась в 1978 году, вторая пришла ей на смену в 1980 году и устанавливалась она вплоть до 1995 года, после чего 2-е поколение вытеснило 3-е. Современное 4-е поколение системы появилось в 2003 году, а сейчас применяется 5-е поколение, которое продолжает использоваться до сих пор.

Что касается конструктивных особенностей, то четырехканальная система — самая последняя и технологически совершенная. Но ей предшествовали:

  • одноканальная система (в ней использовалось всего два клапана, которыми регулировалось давление во всех магистралях одновременно. Примечательно, что в одноканальном типе система обычно вносила коррективы только в механизмах ведущей оси, то есть, АБС работала только с двумя колесами);
  • двухканальная (в этом типе АБС тормозные механизмы разделили по бортам, для каждого из которых предусмотрены свой комплект клапанов. То есть, один канал объединял в себе механизмы переднего и заднего колес одной стороны);
  • Трехканальная (в ней для колес задней оси предусматривался один комплект клапанов, а передние оснащались каждый своим каналом).

Сейчас эти три типа системы ABS встречаются только разве что на старых авто.

Что такое АБС?

Под АБС понимается автоматизированная банковская система, которая представляет собой масштабный комплекс технического и программного обеспечения работы кредитной организации. Необходимость его введения обусловлена тем, что банковский бизнес предусматривает составление большого объема отчетности, направляемой в Центробанк России, а также необходимостью надежной защиты проходящих через банк данных о его клиентах и работниках.

Основными целями внедрения АБС в банковский бизнес являются:

  • увеличение производительности работы кредитной организации, которая заключается в росте количества проводимых финансовых операций;
  • ускорение проверки и обработки получаемых данных;
  • снижение количества сотрудников банковского учреждения;
  • предоставление возможности непрерывного клиентского обслуживания;
  • сокращение расходов банка за счет снижения себестоимости выполняемых финансовых операций;
  • своевременное формирование и отправление предусмотренной действующим законодательством отчетности;
  • надежная защита баз данных о клиентах и сотрудниках кредитной организации.

Диагностика неисправности своими силами

Если при зажигании контрольной лампы «ABS» вы едете в сервисный центр, информация данной главы вам не нужна. Специалисты подключат к автомобилю фирменный диагностический сканер, и при необходимости выполнят ремонт за ваши деньги.

А как проверить датчик АБС самостоятельно?

Если у вас есть самая простая читалка ошибок типа ELM-327, можно выполнить диагностику с помощью специальной программы. Такой софт есть и для Windows, и для платформ мобильных устройств. Тест с высокой долей вероятности покажет, на каком колесе проблема с датчиком, и возможно определит характер неисправности.

А если такого тестера нет? Воспользуемся мультиметром и визуальными средствами: лупа, фонарик.

  • Визуальный осмотр. Проверяем по всей длине соединительный кабель. Если есть тестер — можно прозвонить провода от разъема датчика до разъема контроллера АБС. Разумеется, для этого нужна электрическая схема вашего автомобиля. Проверяем состояние контактов разъема: из-за постоянного нахождения в агрессивной среде, они могут окислиться.

    Проверяем состояние самого датчика: корпус должен быть целым, из-под точки крепления не вытекает жидкость (масло, вода), нет следов оплавления и подгорания пластика.

  • Диагностируем состояние ступичного подшипника: для этого необходимо вывесить колесо на домкрате, и покачать его в горизонтальной и вертикальной плоскостях.

Если проблемы не обнаружены — проверяем датчик с помощью мультиметра или более сложного прибора: осциллографа.

Снять импульсы с датчика можно только осциллографом, при вращении колеса вручную. На мультиметре можно зарегистрировать наличие (отсутствие) напряжения в принципе. Порядок измерения 1–2 вольта.

На некоторых датчиках можно измерить сопротивление. Оно должно быть в пределах 0.8–1.3 кОм. Но этот параметр скорее позволяет проверить наличие обрыва во внутренней цепи, нежели исправность сенсора.

Система АБС: назначение и особенности

Перед тем, как рассматривать ABS, что это такое и как устроена система, необходимо разобраться с основным назначением и функциями. Начнем с того, что на панели приборов большинства авто при включении зажигания кратковременно загорается индикатор «ABS». Также при резком нажатии на педаль тормоза удается ощутить характерную вибрацию педали. Все это указывает на наличие и работоспособность указанной системы на машине.

Так вот, ABS или антиблокировочная система не позволяет колесам блокироваться при активном торможении. Такая система позволяет избежать  полной потери управляемости  в случае блокировки управляемых колес. Если точнее, АБС – это система, позволяющая управлять давлением в тормозных магистралях.

Начнем с того, что автомобиль без АБС с нажатой педалью тормоза и на полностью заблокированных колесах просто скользит, не реагируя на руль. Чтобы получить возможность управлять машиной, следует отпустить педаль тормоза и частично разблокировать колеса, позволив им вращаться.

Автогонщики и водители-профессионалы хорошо знают эту особенность, практикуя на автомобиле без АБС так называемый прием импульсного (ступенчатого) торможения. Весь прием сводится к тому, что водитель быстро нажимает и затем слегка приотпускает педаль тормоза, тем самым блокируя колеса для торможения, однако, не допуская полной блокировки, чтобы не произошло потери управляемости.      

Само собой, обычный водитель, а не опытный профессионал при экстренном торможении испытывает  моментальный испуг и сильно нажимает  на тормоз. При этом машина без АБС становится  попросту неуправляемой, вращение рулем во время торможения не позволяет изменить траекторию движения транспортного средства.

В такой ситуации теряется контроль над авто, не получается объехать препятствие, каким либо образом изменить траекторию движения авто при торможении  и т.д. Естественно, все эти факторы  долгое время оставались причиной многочисленных ДТП с серьезными последствиями.

Решить проблему была призвана система АБС. В двух словах, когда водитель сильно жмет на тормоз,  система фактически имитирует работу гонщика-профессионала, который очень быстро нажимает и приотпускает тормоза. При этом электроника справляется с задачей намного быстрее и эффективнее по сравнению с человеком.

Вибрации, которые ощущаются  при работе АБС на педали тормоза в виде «трещетки» и есть те самые импульсы-нажатия. Если точнее, как только система определяет, что колесо блокируется,  она снижает давление в тормозной магистрали на данном колесе, чтобы позволить ему вращаться.

Пока водитель не отпустит педаль тормоза процесс блокировки и разблокировки колеса происходит непрерывно по несколько раз в секунду до момента, пока водитель не перестанет сильно жать на педаль. Система ABC настроена так, что антиблокировка ABS срабатывает только при активном торможении, то есть при легком подтормаживании ее работа зачастую не ощущается.

Еще следует добавить, что на авто с АБС машина  при экстренном торможении имеет увеличенный тормозной путь по сравнению с моделями без такой системы в точно таких же условиях. Другими словами, ошибочно думать, что антиблокировочная система необходима для уменьшения тормозного пути. Главная ее задача — сохранить управляемость во время торможения, а также обеспечить равномерное и по возможности прямолинейное торможение.

Если же говорить о тормозном пути,  все будет зависеть от покрытия. Например, если резко тормозить на сухом асфальте, АБС уменьшает тормозной путь,  не позволяя колесам скользить. Если же тормозить на рыхлых поверхностях, на снегу или на льду, заблокированные  без ABS колеса зарываются и тормозной путь меньше.

Однако, даже с учетом  увеличения тормозного пути, именно АБС сохраняет возможность маневрирования и управления автомобилем, что зачастую намного важнее.